ADXL345 driver

This driver supports Analog Device’s ADXL345/375 on SPI/I2C bus.

1. Supported Devices

The ADXL345 is a generic purpose low power, 3-axis accelerometer with selectable measurement ranges. The ADXL345 supports the ±2 g, ±4 g, ±8 g, and ±16 g ranges.

2. Device Attributes

Each IIO device, has a device folder under /sys/bus/iio/devices/iio:deviceX, where X is the IIO index of the device. Under these folders reside a set of device files, depending on the characteristics and features of the hardware device in questions. These files are consistently generalized and documented in the IIO ABI documentation.

The following table shows the ADXL345 related device files, found in the specific device folder path /sys/bus/iio/devices/iio:deviceX.

3-Axis Accelerometer related device files

Description

in_accel_sampling_frequency

Currently selected sample rate.

in_accel_sampling_frequency_available

Available sampling frequency configurations.

in_accel_scale

Scale/range for the accelerometer channels.

in_accel_scale_available

Available scale ranges for the accelerometer channel.

in_accel_x_calibbias

Calibration offset for the X-axis accelerometer channel.

in_accel_x_raw

Raw X-axis accelerometer channel value.

in_accel_y_calibbias

y-axis acceleration offset correction

in_accel_y_raw

Raw Y-axis accelerometer channel value.

in_accel_z_calibbias

Calibration offset for the Z-axis accelerometer channel.

in_accel_z_raw

Raw Z-axis accelerometer channel value.

Channel Processed Values

A channel value can be read from its _raw attribute. The value returned is the raw value as reported by the devices. To get the processed value of the channel, apply the following formula:

processed value = (_raw + _offset) * _scale

Where _offset and _scale are device attributes. If no _offset attribute is present, simply assume its value is 0.

Channel type

Measurement unit

Acceleration on X, Y, and Z axis

Meters per second squared

Sensor Events

Specific IIO events are triggered by their corresponding interrupts. The sensor driver supports either none or a single active interrupt (INT) line, selectable from the two available options: INT1 or INT2. The active INT line should be specified in the device tree. If no INT line is configured, the sensor defaults to FIFO bypass mode, where event detection is disabled and only X, Y, and Z axis measurements are available.

The table below lists the ADXL345-related device files located in the device-specific path: /sys/bus/iio/devices/iio:deviceX/events. Note that activity and inactivity detection are DC-coupled by default; therefore, only the AC-coupled activity and inactivity events are explicitly listed.

Event handle

Description

in_accel_gesture_doubletap_en

Enable double tap detection on all axis

in_accel_gesture_doubletap_reset_timeout

Double tap window in [us]

in_accel_gesture_doubletap_tap2_min_delay

Double tap latent in [us]

in_accel_gesture_singletap_timeout

Single tap duration in [us]

in_accel_gesture_singletap_value

Single tap threshold value in 62.5/LSB

in_accel_mag_falling_period

Inactivity time in seconds

in_accel_mag_falling_value

Inactivity threshold value in 62.5/LSB

in_accel_mag_adaptive_rising_en

Enable AC coupled activity on X axis

in_accel_mag_adaptive_falling_period

AC coupled inactivity time in seconds

in_accel_mag_adaptive_falling_value

AC coupled inactivity threshold in 62.5/LSB

in_accel_mag_adaptive_rising_value

AC coupled activity threshold in 62.5/LSB

in_accel_mag_rising_en

Enable activity detection on X axis

in_accel_mag_rising_value

Activity threshold value in 62.5/LSB

in_accel_x_gesture_singletap_en

Enable single tap detection on X axis

in_accel_x&y&z_mag_falling_en

Enable inactivity detection on all axis

in_accel_x&y&z_mag_adaptive_falling_en

Enable AC coupled inactivity on all axis

in_accel_y_gesture_singletap_en

Enable single tap detection on Y axis

in_accel_z_gesture_singletap_en

Enable single tap detection on Z axis

Please refer to the sensor’s datasheet for a detailed description of this functionality.

Manually setting the ODR will cause the driver to estimate default values for inactivity detection timing, where higher ODR values correspond to longer default wait times, and lower ODR values to shorter ones. If these defaults do not meet your application’s needs, you can explicitly configure the inactivity wait time. Setting this value to 0 will revert to the default behavior.

When changing the g range configuration, the driver attempts to estimate appropriate activity and inactivity thresholds by scaling the default values based on the ratio of the previous range to the new one. The resulting threshold will never be zero and will always fall between 1 and 255, corresponding to up to 62.5 g/LSB as specified in the datasheet. However, you can override these estimated thresholds by setting explicit values.

When activity and inactivity events are enabled, the driver automatically manages hysteresis behavior by setting the link and auto-sleep bits. The link bit connects the activity and inactivity functions, so that one follows the other. The auto-sleep function puts the sensor into sleep mode when inactivity is detected, reducing power consumption to the sub-12.5 Hz rate.

The inactivity time is configurable between 1 and 255 seconds. In addition to inactivity detection, the sensor also supports free-fall detection, which, from the IIO perspective, is treated as a fall in magnitude across all axes. In sensor terms, free-fall is defined using an inactivity period ranging from 0.000 to 1.000 seconds.

The driver behaves as follows: * If the configured inactivity period is 1 second or more, the driver uses the

sensor’s inactivity register. This allows the event to be linked with activity detection, use auto-sleep, and be either AC- or DC-coupled.

  • If the inactivity period is less than 1 second, the event is treated as plain inactivity or free-fall detection. In this case, auto-sleep and coupling (AC/DC) are not applied.

  • If an inactivity time of 0 seconds is configured, the driver selects a heuristically determined default period (greater than 1 second) to optimize power consumption. This also uses the inactivity register.

Note: According to the datasheet, the optimal ODR for detecting activity, or inactivity (or when operating with the free-fall register) should fall within the range of 12.5 Hz to 400 Hz. The recommended free-fall threshold is between 300 mg and 600 mg (register values 0x05 to 0x09).

In DC-coupled mode, the current acceleration magnitude is directly compared to the values in the THRESH_ACT and THRESH_INACT registers to determine activity or inactivity. In contrast, AC-coupled activity detection uses the acceleration value at the start of detection as a reference point, and subsequent samples are compared against this reference. While DC-coupling is the default mode-comparing live values to fixed thresholds-AC-coupling relies on an internal filter relative to the configured threshold.

AC and DC coupling modes are configured separately for activity and inactivity detection, but only one mode can be active at a time for each. For example, if AC-coupled activity detection is enabled and then DC-coupled mode is set, only DC-coupled activity detection will be active. In other words, only the most recent configuration is applied.

Single tap detection can be configured per the datasheet by setting the threshold and duration parameters. When only single tap detection is enabled, the single tap interrupt triggers as soon as the acceleration exceeds the threshold (marking the start of the duration) and then falls below it, provided the duration limit is not exceeded. If both single tap and double tap detections are enabled, the single tap interrupt is triggered only after the double tap event has been either confirmed or dismissed.

To configure double tap detection, you must also set the window and latency parameters in microseconds (µs). The latency period begins once the single tap signal drops below the threshold and acts as a waiting time during which any spikes are ignored for double tap detection. After the latency period ends, the detection window starts. If the acceleration rises above the threshold and then falls below it again within this window, a double tap event is triggered upon the fall below the threshold.

Double tap event detection is thoroughly explained in the datasheet. After a single tap event is detected, a double tap event may follow, provided the signal meets certain criteria. However, double tap detection can be invalidated for three reasons:

  • If the suppress bit is set, any acceleration spike above the tap threshold during the tap latency period immediately invalidates the double tap detection. In other words, no spikes are allowed during latency when the suppress bit is active.

  • The double tap event is invalid if the acceleration is above the threshold at the start of the double tap window.

  • Double tap detection is also invalidated if the acceleration duration exceeds the limit set by the duration register.

For double tap detection, the same duration applies as for single tap: the acceleration must rise above the threshold and then fall below it within the specified duration. Note that the suppress bit is typically enabled when double tap detection is active.

Usage Examples

Show device name:

root:/sys/bus/iio/devices/iio:device0> cat name
adxl345

Show accelerometer channels value:

root:/sys/bus/iio/devices/iio:device0> cat in_accel_x_raw
-1
root:/sys/bus/iio/devices/iio:device0> cat in_accel_y_raw
2
root:/sys/bus/iio/devices/iio:device0> cat in_accel_z_raw
-253

Set calibration offset for accelerometer channels:

root:/sys/bus/iio/devices/iio:device0> cat in_accel_x_calibbias
0

root:/sys/bus/iio/devices/iio:device0> echo 50 > in_accel_x_calibbias
root:/sys/bus/iio/devices/iio:device0> cat in_accel_x_calibbias
50

Given the 13-bit full resolution, the available ranges are calculated by the following formula:

(g * 2 * 9.80665) / (2^(resolution) - 1) * 100; for g := 2|4|8|16

Scale range configuration:

root:/sys/bus/iio/devices/iio:device0> cat ./in_accel_scale
0.478899
root:/sys/bus/iio/devices/iio:device0> cat ./in_accel_scale_available
0.478899 0.957798 1.915595 3.831190

root:/sys/bus/iio/devices/iio:device0> echo 1.915595 > ./in_accel_scale
root:/sys/bus/iio/devices/iio:device0> cat ./in_accel_scale
1.915595

Set output data rate (ODR):

root:/sys/bus/iio/devices/iio:device0> cat ./in_accel_sampling_frequency
200.000000

root:/sys/bus/iio/devices/iio:device0> cat ./in_accel_sampling_frequency_available
0.097000 0.195000 0.390000 0.781000 1.562000 3.125000 6.250000 12.500000 25.000000 50.000000 100.000000 200.000000 400.000000 800.000000 1600.000000 3200.000000

root:/sys/bus/iio/devices/iio:device0> echo 1.562000 > ./in_accel_sampling_frequency
root:/sys/bus/iio/devices/iio:device0> cat ./in_accel_sampling_frequency
1.562000

Configure one or several events:

root:> cd /sys/bus/iio/devices/iio:device0

root:/sys/bus/iio/devices/iio:device0> echo 1 > ./buffer0/in_accel_x_en
root:/sys/bus/iio/devices/iio:device0> echo 1 > ./buffer0/in_accel_y_en
root:/sys/bus/iio/devices/iio:device0> echo 1 > ./buffer0/in_accel_z_en

root:/sys/bus/iio/devices/iio:device0> echo 1 > ./scan_elements/in_accel_x_en
root:/sys/bus/iio/devices/iio:device0> echo 1 > ./scan_elements/in_accel_y_en
root:/sys/bus/iio/devices/iio:device0> echo 1 > ./scan_elements/in_accel_z_en

root:/sys/bus/iio/devices/iio:device0> echo 14   > ./in_accel_x_calibbias
root:/sys/bus/iio/devices/iio:device0> echo 2    > ./in_accel_y_calibbias
root:/sys/bus/iio/devices/iio:device0> echo -250 > ./in_accel_z_calibbias

root:/sys/bus/iio/devices/iio:device0> echo 24 > ./buffer0/length

## AC coupled activity, threshold [62.5/LSB]
root:/sys/bus/iio/devices/iio:device0> echo 6 > ./events/in_accel_mag_adaptive_rising_value

## AC coupled inactivity, threshold, [62.5/LSB]
root:/sys/bus/iio/devices/iio:device0> echo 4 > ./events/in_accel_mag_adaptive_falling_value

## AC coupled inactivity, time [s]
root:/sys/bus/iio/devices/iio:device0> echo 3 > ./events/in_accel_mag_adaptive_falling_period

## singletap, threshold
root:/sys/bus/iio/devices/iio:device0> echo 35 > ./events/in_accel_gesture_singletap_value

## singletap, duration [us]
root:/sys/bus/iio/devices/iio:device0> echo 0.001875  > ./events/in_accel_gesture_singletap_timeout

## doubletap, window [us]
root:/sys/bus/iio/devices/iio:device0> echo 0.025 > ./events/in_accel_gesture_doubletap_reset_timeout

## doubletap, latent [us]
root:/sys/bus/iio/devices/iio:device0> echo 0.025 > ./events/in_accel_gesture_doubletap_tap2_min_delay

## AC coupled activity, enable
root:/sys/bus/iio/devices/iio:device0> echo 1 > ./events/in_accel_mag_adaptive_rising_en

## AC coupled inactivity, enable
root:/sys/bus/iio/devices/iio:device0> echo 1 > ./events/in_accel_x\&y\&z_mag_adaptive_falling_en

## singletap, enable
root:/sys/bus/iio/devices/iio:device0> echo 1 > ./events/in_accel_x_gesture_singletap_en
root:/sys/bus/iio/devices/iio:device0> echo 1 > ./events/in_accel_y_gesture_singletap_en
root:/sys/bus/iio/devices/iio:device0> echo 1 > ./events/in_accel_z_gesture_singletap_en

## doubletap, enable
root:/sys/bus/iio/devices/iio:device0> echo 1 > ./events/in_accel_gesture_doubletap_en

Verify incoming events:

root:# iio_event_monitor adxl345
Found IIO device with name adxl345 with device number 0
Event: time: 1739063415957073383, type: accel(z), channel: 0, evtype: mag, direction: rising
Event: time: 1739063415963770218, type: accel(z), channel: 0, evtype: mag, direction: rising
Event: time: 1739063416002563061, type: accel(z), channel: 0, evtype: gesture, direction: singletap
Event: time: 1739063426271128739, type: accel(x&y&z), channel: 0, evtype: mag, direction: falling
Event: time: 1739063436539080713, type: accel(x&y&z), channel: 0, evtype: mag, direction: falling
Event: time: 1739063438357970381, type: accel(z), channel: 0, evtype: mag, direction: rising
Event: time: 1739063446726161586, type: accel(z), channel: 0, evtype: mag, direction: rising
Event: time: 1739063446727892670, type: accel(z), channel: 0, evtype: mag, direction: rising
Event: time: 1739063446743019768, type: accel(z), channel: 0, evtype: mag, direction: rising
Event: time: 1739063446744650696, type: accel(z), channel: 0, evtype: mag, direction: rising
Event: time: 1739063446763559386, type: accel(z), channel: 0, evtype: gesture, direction: singletap
Event: time: 1739063448818126480, type: accel(x&y&z), channel: 0, evtype: mag, direction: falling
...

Activity and inactivity belong together and indicate state changes as follows

root:# iio_event_monitor adxl345
Found IIO device with name adxl345 with device number 0
Event: time: 1744648001133946293, type: accel(x), channel: 0, evtype: mag, direction: rising
  <after inactivity time elapsed>
Event: time: 1744648057724775499, type: accel(x&y&z), channel: 0, evtype: mag, direction: falling
...

3. Device Buffers

This driver supports IIO buffers.

All devices support retrieving the raw acceleration and temperature measurements using buffers.

Usage examples

Select channels for buffer read:

root:/sys/bus/iio/devices/iio:device0> echo 1 > scan_elements/in_accel_x_en
root:/sys/bus/iio/devices/iio:device0> echo 1 > scan_elements/in_accel_y_en
root:/sys/bus/iio/devices/iio:device0> echo 1 > scan_elements/in_accel_z_en

Set the number of samples to be stored in the buffer:

root:/sys/bus/iio/devices/iio:device0> echo 10 > buffer/length

Enable buffer readings:

root:/sys/bus/iio/devices/iio:device0> echo 1 > buffer/enable

Obtain buffered data:

root:> iio_readdev -b 16 -s 1024 adxl345 | hexdump -d
WARNING: High-speed mode not enabled
0000000   00003   00012   00013   00005   00010   00011   00005   00011
0000010   00013   00004   00012   00011   00003   00012   00014   00007
0000020   00011   00013   00004   00013   00014   00003   00012   00013
0000030   00004   00012   00013   00005   00011   00011   00005   00012
0000040   00014   00005   00012   00014   00004   00010   00012   00004
0000050   00013   00011   00003   00011   00012   00005   00011   00013
0000060   00003   00012   00012   00003   00012   00012   00004   00012
0000070   00012   00003   00013   00013   00003   00013   00012   00005
0000080   00012   00013   00003   00011   00012   00005   00012   00013
0000090   00003   00013   00011   00005   00013   00014   00003   00012
00000a0   00012   00003   00012   00013   00004   00012   00015   00004
00000b0   00014   00011   00003   00014   00013   00004   00012   00011
00000c0   00004   00012   00013   00004   00014   00011   00004   00013
00000d0   00012   00002   00014   00012   00005   00012   00013   00005
00000e0   00013   00013   00003   00013   00013   00005   00012   00013
00000f0   00004   00014   00015   00005   00012   00011   00005   00012
...

See Documentation/iio/iio_devbuf.rst for more information about how buffered data is structured.

4. IIO Interfacing Tools

See Documentation/iio/iio_tools.rst for the description of the available IIO interfacing tools.